Algebra preliminary Examination, Fall 1996

1. Let G be a group of order 63 .
(a) Show that every 7-Sylow subgroup G_{7} of G is normal.
(b) let G_{3} be a 3-Sylow subgroup of G. Show that the canonical map $G_{3} \hookrightarrow G \rightarrow G / G_{7}$ is an isomorphism. Conclude that G is a semidirect product of G_{3} and G_{7}.
(c) List all possible groups of order 63 up to isomorphism.
2. Show that for every $n>0$ the symmetric group S_{n} can be generated by two elements (exhibit them).
3. Find the Galois group of the polynomial $x^{10}-1$ over the field \mathbf{Q} of rational numbers. Describe the splitting field K of this polynomial: gibe the degree $[K: \mathbf{Q}]$, find the minimal polynomial of the primitive root of $x^{10}-1=0$ over \mathbf{Q} and find all the intermediate fields between K and \mathbf{Q}.
4. Show that the ring $\mathbf{Z}[x] /\left(x^{2}+1\right)$ is an integrally closed domain.
5. Let F be a field and $A \subset \operatorname{Mat}_{2}(F)$ be the subring consisting of matrices of the form $\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right)$. Find the Jacobson radical of A and all the simple A-modules.
