Algebra preliminary Examination, Fall 1996

- 1. Let G be a group of order 63.
 - (a) Show that every 7-Sylow subgroup G_7 of G is normal.

(b) let G_3 be a 3-Sylow subgroup of G. Show that the canonical map $G_3 \hookrightarrow G \to G/G_7$ is an isomorphism. Conclude that G is a semidirect product of G_3 and G_7 .

(c) List all possible groups of order 63 up to isomorphism.

- 2. Show that for every n > 0 the symmetric group S_n can be generated by two elements (exhibit them).
- 3. Find the Galois group of the polynomial $x^{10} 1$ over the field \mathbf{Q} of rational numbers. Describe the splitting field K of this polynomial: gibe the degree $[K : \mathbf{Q}]$, find the minimal polynomial of the primitive root of $x^{10} - 1 = 0$ over \mathbf{Q} and find all the intermediate fields between K and \mathbf{Q} .
- 5. Show that the ring $\mathbf{Z}[x]/(x^2+1)$ is an integrally closed domain.
- 6. Let F be a field and $A \subset \operatorname{Mat}_2(F)$ be the subring consisting of matrices of the form $\begin{pmatrix} a & b \\ 0 & d \end{pmatrix}$. Find the Jacobson radical of A and all the simple A-modules.