Algebra preliminary examination, Fall 1991.

- 1. (a) Define semisimple rings and give an example of such a ring.
 - (b) Explain why \mathbf{Z} is not semisimple.
 - (c) List all non-isomorphic semisimple rings with 81 elements.
- 2. Give at least 2 equivalent characterizations of the Jacobson radical of a ring R. Then compute the Jacobson radicals of the following rings:

Z/8Z, Z/60Z, $Q[x]/(x^3-5x)$.

3. Define what does it mean for a module M to be artinian. Then prove:

Lemma. If M is an artinian module and $f: M \to M$ is an injective homomorphism, then f is an isomorphism.

- 4. (a) Define projective module.
 - (b) Define local ring.
 - (c) Prove that a finitely generated projective module over a local ring is free.
- 5. Find the splitting field over \mathbf{Q} of the polynomial $x^4 1$. Compute its galois group. Describe its subgroups and corresponding subfields and indicate which subfields are normal.
- 6. Let F_n be a field with n elements. List all the subfields of F_{16}, F_{32}, F_{64} .
- 7. Let G be a finite group and p be the smallest prime dividing |G|. Prove that any subgroup of index p is normal in G.
- 8. (a) Define simple group.

(b) Define the alternating group A_n and identify it with some more elementary groups for n = 2, 3, 4.

(c) Prove that the only simple group of order 60 is A_n