Algebra Preliminary Exam

September 2011

- (1) Let \mathbf{F} be a field of cardinality 729. For the following question only, you do not need to justify your answer.
 - (a) What is the additive group \mathbf{F} as an abstract abelian group?
 - (b) What is the multiplicative group \mathbf{F}^{\times} of units of \mathbf{F} as an abstract abelian group?
 - (c) What is the group of field automorphisms of **F**?
- (2) Prove that $\mathbf{Z}[x]$ is a unique factorization domain.
- (3) Let K be a field, and let $R = K[x, y]/(y^2 x^3)$. Prove that the localization of R at $\mathfrak{m} = (x, y)$ is not a discrete valuation ring.
- (4) Let G be a finite group, and let V be a characteristic zero representation of G. Suppose that for every $g \in G$, the fixed space $V^g \subset V$ of $v \in V$ such that gv = v has dimension at least $\frac{1}{2} \dim(V)$. Prove that there exists a $v \in V$ such that gv = v for all $g \in G$.
- (5) Let (A, \mathfrak{m}) and (B, \mathfrak{n}) be local noetherian rings. Suppose that $\phi : A \to B$ is a map such that $\phi(\mathfrak{m}) \subset \mathfrak{n}$, and suppose that:
 - (a) $A/\mathfrak{m} \to B/\mathfrak{n}$ is an isomorphism,
 - (b) $\mathfrak{m} \to \mathfrak{n}/\mathfrak{n}^2$ is surjective,
 - (c) B is finitely generated as an A-module.

Prove that ϕ is surjective.

(6) Let p be prime. Prove that $x^p - x - 1$ is irreducible over \mathbf{F}_p . What is the Galois group of its splitting field?