ALGEBRA PRELIM - SEPTEMBER 21, 2007

1. (i) Compute the Galois group of the polynomial $X^{6}+3$ over \mathbb{Q}, and describe how its elements act on the roots of this polynomial.
(ii) Find a primitive element for the splitting field of $X^{6}+3$.
(iii) List all fields intermediate between \mathbb{Q} and the splitting field of $X^{6}+3$.
2. (i) Let $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ be a short exact sequence of abelian groups. Prove that if A and C are torsion, then the same is true of B.
(ii) Let $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow D \rightarrow 0$ be an exact sequence of abelian groups. If A and D are torsion, is it necessarily true that B and C are also torsion? If so, prove it. If not, give a counter-example.
3. Let A be a commutative local ring, with unique maximal ideal \mathfrak{m}, and residue field $k:=A / \mathfrak{m}$. Let M be a faithful, finitely generated A-module.
(i) If $M / \mathfrak{m} M$ is 1 -dimensional over k, prove that M is free of rank 1 over A.
(ii) If $M / \mathfrak{m} M$ is 2-dimensional over k, is M necessarily free over A ? If so, prove it. If not, give a counter-example.
(iii) Does the analogue of (i) hold if omit either of the hypotheses that M is faithful or finitely generated? For each hypothesis, either prove that it may be omitted, or else provide a counter-example showing that it is necessary.
4. Let I denote the ideal $(X Y, X Z, Y Z)$ of $\mathbb{C}[X, Y, Z]$.
(i) What are the minimal prime ideals of I ?
(ii) Is the quotient ring $\mathbb{C}[X, Y, Z] / I$ reduced?
5. Let G_{1} and G_{2} be two groups, both of order 128 , let X_{1} and X_{2} be two sets, both of order 8 , and suppose given a faithful action of G_{1} on X_{1} and a faithful action of G_{2} on X_{2}. Prove that there exists an isomorphism $\phi: G_{1} \xrightarrow{\sim} G_{2}$, and a bijection $\psi: X_{1} \xrightarrow{\sim} X_{2}$, such that $\psi(g \cdot x)=\phi(g) \cdot \psi(x)$ for every $g \in G_{1}$ and $x \in X_{1}$.
6. List all semi-simple \mathbb{R}-algebras of dimension 4 whose centre is:
(i) 1-dimensional
(ii) 2-dimensional
(iii) 3-dimensional.
(iv) 4-dimensional.
(v) Which (if any) of the semi-simple \mathbb{R}-algebras that you have found is isomorphic to a group algebra $\mathbb{R}[G]$ for some group G ?
