Math 470 Algebra September 2003

1.a) Let C_p be the cyclic group of order p and let X be a finite set so that number of elements of X is prime to p. Show that if C_p acts on X, then this action must have a fixed point.

b) Now prove Cauchy's Theorem: if p divides the order of a finite group, then G has an element of order p. To get started you might notice that the set

$$Y = \{ (x_1, x_2, \dots, x_p) \mid x_1 x_2 \cdots x_p = 1 \} \subset G^p$$

contains the element (e, e, \ldots, e) where e in the identity element of G.

2. Find the splitting field F of the polynomial $x^4 - 2$ over the rational numbers \mathbb{Q} . Then identify the Galois group of F over \mathbb{Q} .

3. a)Let A be a commutative local ring with maximal ideal \mathfrak{m} . Let M be a finitely generated A-module. Prove that if $M/\mathfrak{m}M = 0$, then M = 0.

b) Now show that if $f: M \to M$ is an A-module endomorphism so that $\overline{f}: M/\mathfrak{m}M \to M/\mathfrak{m}M$ is onto, then f is onto.

4. Recall that two $n \times n$ matrices A and B over a field are similar if there is an invertible $n \times n$ matrix Q so that

$$A = QBQ^{-1}.$$

A partition of a positive integer n is a sequence of positive integers $n_1 \ge n_2 \ge \ldots \ge n_k$ so that $n_1 + \cdots + n_k = n$. Let P(n) be the number of distinct partitions of n. For example, P(4) = 5.

Prove that up to similarity of matrices, there are exactly $P(n) \ n \times n$ matrices A so that $A^n = 0$ (same n).

5. Suppose there is a commutative diagram of abelian groups

$$\begin{array}{c|c} A_1 \longrightarrow A_2 \longrightarrow A_3 \longrightarrow A_4 \\ f_1 & f_2 & f_3 & f_4 \\ B_1 \longrightarrow B_2 \longrightarrow B_3 \longrightarrow B_4 \end{array}$$

in which the rows are exact. Prove that if f_1 and f_3 onto, and f_4 one-to-one, then f_2 is onto.

6. Let C_3 be the cyclic group of order 3 with generator σ . Define a subspace V of \mathbb{C}^3 by

$$V = \{ (x, y, z) \mid x + y + z = 0 \}.$$

Then C_3 acts linearly on V by $\sigma(x, y, z) = (z, x, y)$. Write V as a direct sum of simple modules over the group ring $\mathbb{C}[C_3]$.