Math 470 Algebra

September 2003
1.a) Let C_{p} be the cyclic group of order p and let X be a finite set so that number of elements of X is prime to p. Show that if C_{p} acts on X, then this action must have a fixed point.
b) Now prove Cauchy's Theorem: if p divides the order of a finite group, then G has an element of order p. To get started you might notice that the set

$$
Y=\left\{\left(x_{1}, x_{2}, \ldots, x_{p}\right) \mid x_{1} x_{2} \cdots x_{p}=1\right\} \subset G^{p}
$$

contains the element (e, e, \ldots, e) where e in the identity element of G.
2. Find the splitting field F of the polynomial $x^{4}-2$ over the rational numbers \mathbb{Q}. Then identify the Galois group of F over \mathbb{Q}.
3. a)Let A be a commutative local ring with maximal ideal \mathfrak{m}. Let M be a finitely generated A-module. Prove that if $M / \mathfrak{m} M=0$, then $M=0$.
b) Now show that if $f: M \rightarrow M$ is an A-module endomorphism so that $\bar{f}: M / \mathfrak{m} M \rightarrow$ $M / \mathfrak{m} M$ is onto, then f is onto.
4. Recall that two $n \times n$ matrices A and B over a field are similar if there is an invertible $n \times n$ matrix Q so that

$$
A=Q B Q^{-1}
$$

A partition of a positive integer n is a sequence of positive integers $n_{1} \geq n_{2} \geq \ldots \geq n_{k}$ so that $n_{1}+\cdots+n_{k}=n$. Let $P(n)$ be the number of distinct partitions of n. For example, $P(4)=5$.

Prove that up to similarity of matrices, there are exactly $P(n) n \times n$ matrices A so that $A^{n}=0($ same $n)$.
5. Suppose there is a commutative diagram of abelian groups

in which the rows are exact. Prove that if f_{1} and f_{3} onto, and f_{4} one-to-one, then f_{2} is onto.
6. Let C_{3} be the cyclic group of order 3 with generator σ. Define a subspace V of \mathbb{C}^{3} by

$$
V=\{(x, y, z) \mid x+y+z=0\} .
$$

Then C_{3} acts linearly on V by $\sigma(x, y, z)=(z, x, y)$. Write V as a direct sum of simple modules over the group ring $\mathbb{C}\left[C_{3}\right]$.

