Algegra Preliminary Exam: September 2000

1. Let F be a field of characteristic 0 and consider the field F(x), where x is transcendental over F (i.e., satisfies no polynomial equation with coefficients in F). Let $G \subset Aut(F(x))$ be the group of automorphisms geneterated by the automorphism over F sending x to x + 1.

- a. Determine $F(x)^G$.
- b. Determine the Galois group $Gal(F(x)/F(x)^G)$.

2. Let k be a field and let A be a finitely generated commutative k-algebra. Show that A is Artinian if and only if it is finite dimensional as a k-vector space.

3. Let $\mathbb{Q}(\zeta_{18})$ be the cyclotomic field obtained by adjoining to \mathbb{Q} the roots of $x^{18} - 1$.

- a. Determine $Gal(\mathbb{Q}(\zeta_{18})/\mathbb{Q})$.
- b Describe all fields $F, \mathbb{Q} \subset F \subset \mathbb{Q}(\zeta_{18})$.

4. Let R be a ring and $\mathfrak{m} \subset R$ a maximal ideal.

- a. Show that $R_{\mathfrak{m}}$ is a local ring.
- b. Show that $R = \bigcap_{\mathfrak{m}} R_{\mathfrak{m}}$ whenever R is an integral domain, where the intersection is indexed by all maximal ideals of R.

5 Let G be given by a set X of generators and a set R of relations (so that G equals the quotient of the free group on X by the normal subgroup generated by R), and similarly let G' be given by a set X' of generators and a set R' of relations. a. Give generators and relations for a group G * G' which satisfies

$$Hom_{grps}(G * G', K) = Hom_{grps}(G, K) \times Hom_{grps}(G', K)$$

for all groups K.

- b. Prove that the property given in (a.) determines G * G' up to isomorphism.
 - **6.** Find the injective envelope for the \mathbb{Z} -module $\mathbb{Z}/n\mathbb{Z}$, $n \geq 0$.