Algebra Preliminary Exam, June 2011

- 1. (a) Show that any group of order 42 contains a normal subgroup of index 6.
 - (b) Find (with proof) a group of order 42 that contains a subgroup H such that $H \cong S_3$ and such that H is not normal.
- 2. Let k be a field.
 - (a) Prove that any semi-simple k-algebra of dimension ≤ 3 is commutative.
 - (b) Does the result of (ii) remain true if you omit the hypothesis of semisimplicity?
- 3. Let G be a finite group and let ρ be an representation of G on an ndimensional vector space V over the field \mathbb{C} of complex numbers. Suppose that for every element $g \in G$, there exists a basis for V with respect to which the linear automorphism $\rho(g)$ has the form

/1	*	*	 *)
$\begin{pmatrix} 1\\0\\0 \end{pmatrix}$	1	*	 *
0	0	1	 *
:	:	:	:
1 · 1	•	•	·
$\setminus 0$	0	0	 1/

(i.e. 0s below the diagonal, 1s on the diagonal, and unspecified entries above the diagonal). Prove that ρ is trivial, i.e. that $\rho(g)$ acts as the identity on V for every $g \in G$.

- 4. Find the Galois group of $x^4 + 1$ over each of the following fields: \mathbb{Q} , $\mathbb{Q}(i)$, \mathbb{F}_3 , \mathbb{F}_5 .
- 5. Let A be a commutative ring with 1, and let M be a finitely generated A-module.
 - (a) If \mathfrak{m} is a maximal ideal of A, prove that $M/\mathfrak{m}M$ is non-zero if and only if the localization $M_{\mathfrak{m}}$ is non-zero.
 - (b) Is the analogous statement true if we replace \mathfrak{m} by a non-maximal prime ideal of A? Carefully explain why or why not.
- 6. Suppose that A is a commutative ring with 1.
 - (a) If $N \subset M$ are A-modules and $N_{\mathfrak{m}} = M_{\mathfrak{m}}$ for all maximal ideals \mathfrak{m} , show that N = M.
 - (b) Suppose that A has only finitely many maximal ideals. If $A_{\mathfrak{m}}$ is Noetherian for all maximal ideals \mathfrak{m} , show that A is Noetherian.

- 7. Let $A = \mathbb{C}[x, y, z]/(x^2 + y^2 2z^2)$, and let I be the ideal of A generated by x y.
 - (a) Prove that I is a radical ideal.
 - (b) Find all the minimal primes of I.
 - (c) Determine the height of each of the prime ideals you found in (b).