GEOMETRY AND TOPOLOGY QUALIFYING EXAM

Instructions: Choose six of the eight problems to solve.

1. Let $n \ge 1$ be a natural number, and let *X* be the union of the unit sphere in \mathbb{R}^n and the line connecting the north and south poles.

- a) What is the fundamental group of this topological space?
- b) Let $n \ge 3$. Define a space \tilde{X} and a map $\pi : \tilde{X} \to X$ which is the universal covering.
- 2. Consider the unit sphere in \mathbb{C}^2 :

$$S^{3} = \{(w, z) \mid |w|^{2} + |z|^{2} = 1\}.$$

Given a positive integer k, consider the continuous map

$$T: S^3 \to S^3$$

given by the formula $T(w, z) = (e^{2\pi i/k}w, e^{2\pi i/k}z)$.

- a) Show that *T* is a diffeomorphism.
- b) Let Γ be the transformation group generated by *T*. Show that *T* is a finite group. What is its order?
- c) Show that the quotient space $M = S^3/\Gamma$ is a manifold.
- d) What is the fundamental group of M?
- e) Classify the covering spaces of *M*.

3. Prove that if \mathbb{CP}^{2n} is the universal cover of a smooth manifold *M*, then $M = \mathbb{CP}^{2n}$.

4. Recall the Poincare duality says that for a compact oriented manifold M^n , $H_i(M; \mathbb{Z})$ is isomorphic to $H^{n-i}(M; \mathbb{Z})$. Prove that if M is a compact oriented manifold of dimension 2k and that $H_{k-1}(M; \mathbb{Z})$ is torsion free, i.e., torsion part is zero, prove that $H_k(M; \mathbb{Z})$ is also torsion free.

5. Let *M* and *N* be connected oriented *n*-dimensional differentiable manifolds. Their connected sum *M*#*N* is defined as follows: pick points *x* and *y* in *M* and *N* respectively, remove small open balls $B_{\epsilon}(x)$ and $B_{\epsilon}(y)$ around *x* and *y*, and identify the boundaries of the resulting manifolds $M \setminus B_{\epsilon}(x)$ and $N \setminus B_{\epsilon}(y)$, which are diffeomorphic to the sphere S^{n-1} , by an orientation reversing diffeomorphism.

Calculate the Euler characteristic of M#N in terms of M and N.

6. Let $f: M \to S^1$, and let $N \subseteq M$ be a closed orientable 1-manifold.

- a) Show that there is a $\theta \in S^1$, so that $f^{-1}(\theta)$ is a submanifold, and $f^{-1}(\theta) \pitchfork N$.
- b) Suppose that $\Sigma \subseteq M$ is a compact orientable surface with boundary, so that $\partial \Sigma = N$. Show that $\int_N f^*(d\theta) = 0$.
- c) Let $\theta \in S^1$ be as in part (a), and suppose $\int_N f^*(d\theta) = 0$. Show $f^{-1}(\theta) \cap N$ consists of an even number of points.

7. Let *M* be a smooth *n*-manifold equipped with a Riemannian metric, and let $u : [0, 1] \times (-\varepsilon, \varepsilon) \rightarrow M$ be a smooth map so that the curve $t \mapsto u(t, s_0)$ is a geodesic for all $s_0 \in (-\varepsilon, \varepsilon)$. Let $\gamma : [0, 1] \rightarrow M$ be the curve $t \mapsto u(t, 0)$ and let *V* be the vector field along γ defined by

$$V = \left. \frac{\partial u}{\partial s} \right|_{s=0}$$

a) Show that V satisfies the Jacobi equation

$$\frac{D^2 V}{dt^2} + R(V, \dot{\gamma})\dot{\gamma} = 0$$

where R(X, Y)Z is the curvature tensor of M.

b) Show that the set of such V is a vector space of dimension 2n.

8. Let $M = \{(x, y, z); x^2 + y^2 = z^2, z > 0\} \subseteq \mathbb{R}^3$. Equip *M* with the Riemannian metric restricted from the Euclidean metric on \mathbb{R}^3 . Show that *M* is locally Euclidean.