GEOMETRY AND TOPOLOGY QUALIFYING EXAM SEPTEMBER, 2019

All questions are of equal value. Your should solve six of the eight problems.

- 1) Calculate $H^3(\mathbb{CP}^n,\mathbb{Z})$.
- 2) The manifold $SL(2,\mathbb{R})$ is the space of all 2×2 real matrices with determinant 1. Let $SO(2) \subset SL(2,\mathbb{R})$ be the subset of rotation matrices, that is, matrices $A \in SL(2,\mathbb{R})$ such that $A^{-1} = A^T$ and det(A) = 1. Show that there is a deformation retraction of $SL(2,\mathbb{R})$ onto SO(2).
- 3) Let ξ and η be vector fields on a manifold M, and let $\mathcal{L}(\xi)$ and $\iota(\eta)$ be the operations on the de Rham complex $\Omega^*(M)$ of Lie derivative with respect to ξ and interior product with respect to η (sometimes denoted by \mathcal{L}_{ξ} and $\eta \lrcorner$, respectively). Prove that

$$[\mathcal{L}(\xi), \iota(\eta)] = \iota([\xi, \eta]).$$

(Here the bracket on the left hand side denotes the commutator of operators.)

- 4) An almost-complex manifold is a manifold M whose tangent spaces are complex vector spaces smoothly. This may be expressed by giving an endomorphism $J \in \text{Hom}(TM, TM)$ of the tangent bundle TM (a bundle map from TM to itself) such that $J^2 = -\text{Id}$, so that a complex number z = x + iy acts on TM by x + yJ.
 - a) Show that the sphere S^2 is an almost-complex manifold.
 - b) Show that an almost-complex manifold is orientable.
 - c) Show that an orientable surface is an almost-complex manifold.
- 5) The real projective space \mathbb{RP}^2 is the quotient of the unit sphere in \mathbb{R}^3

$$S^{2} = \{(x, y, z) \in \mathbb{R}^{3} \mid x^{2} + y^{2} + z^{2} = 1\}$$

by the involution

$$(x, y, z) \mapsto (-x, -y, -z).$$

Calculate its de Rham cohomology.

6) Let M be a manifold with boundary, N a manifold and let $f : M \to N$ be a smooth map. Show that there is a point $p \in N$ so that $f^{-1}(p)$ is a submanifold of M which is transverse to ∂M .

- 7) Let $\alpha \in \Omega^k M$ and $\beta \in \Omega^l M$. Suppose that α is closed, and that β is exact. Let N be a compact (k + l)-manifold with boundary, and suppose that $\int_N \alpha \wedge \beta \neq 0$. Show that there is no primitive $\lambda \in \Omega^{l-1} M$ of β , so that $\lambda|_{\partial N} = 0$.
- 8) Let $M \subseteq N$ be a submanifold, and let g be a Riemannian metric on N. Let ∇ be the Levi-Civita connection of g, and let ∇^M be defined by $\nabla^M_X Y = \pi(\nabla_X \tilde{Y})$, where X and Y are vector fields on M, \tilde{Y} is an extension to N, and $\pi : TN_p \to TM_p$ is the orthogonal projection for $p \in M$.
 - a) Show that ∇^M is well defined, and that it is the Levi-Civita connection for the restricted metric $g|_M$.
 - b) For vector fields X and Y on M, let $\mathbb{I}(X, Y) = \nabla_X \tilde{Y} \nabla_X^M \tilde{Y}$ be the normal component of $\nabla_X \tilde{Y}$. Show that \mathbb{I} is symmetric in X and Y.