## Preliminary Exam in Analysis Spring 2019

## Instructions:

(1) There are three parts to this exam: I (measure theory), II (functional analysis), and III (complex analysis). Do three problems from each part.
(2) In each problem, full credit requires proving that your answer is correct. You may quote and use theorems and formulas. But if a problem asks you to state or prove a theorem or a formula, you need to provide the full details.

## Part I. Measure Theory

Do three of the following five problems.
(1) (a) State the Dominated Convergence Theorem.
(b) Let $\left\{f_{n}\right\}$ be a sequence of integrable functions with

$$
\int\left|f_{n}-f_{n-1}\right| d \mu \leq M_{n}, \quad \sum_{n=1}^{\infty} M_{n}<\infty .
$$

Show that $f_{n}$ converges almost everywhere and

$$
\int\left(\lim _{n} f_{n}\right) d \mu=\lim _{n} \int f_{n} d \mu
$$

(2) Suppose $f \in L^{p}\left(\mathbb{R}^{d}\right), 1 \leq p<\infty$. For $h \in \mathbb{R}^{d}$, set $f^{h}(x)=f(h+x)$.
(a) Show that $\left\|f^{h}-f\right\|_{p} \rightarrow 0$ as $h \rightarrow 0$.
(b) Prove that if $f \in L^{1}\left(\mathbb{R}^{d}\right)$, then

$$
\int f(x) e^{-i x \cdot z} d x \rightarrow 0
$$

$$
\text { as }|z| \rightarrow \infty .
$$

(3) Let

$$
\mathcal{A}=\left\{f \in L^{2}([0,1]): \int_{0}^{1} f=3, \int_{0}^{1} x f(x)=2\right\} .
$$

Find

$$
\min _{f \in \mathcal{A}}\|f\|_{2}
$$

and a function for which the minimum is attained. Hint: Consider functions of the form $g(x)=(x+\lambda) f(x)$ with $\lambda \in \mathbb{R}$ and $f \in \mathcal{A}$.
(4) Let $(X, \mathcal{M}, \mu)$ be a finite measure space. For a real valued measurable function $f$ set

$$
r(f)=\int \frac{|f|}{1+|f|} d \mu .
$$

Show that a sequence of $\left(f_{n}\right)$ of integrable functions converges in measure to $f$ if and only if $r\left(f_{n}-f\right) \rightarrow 0$.
(5) (a) Define what it means for a function $f:[a, b] \rightarrow \mathbb{R}$ to be of bounded variation.
(b) Suppose that $f:[a, b] \rightarrow \mathbb{R}$ is a function of bounded variation. Let

$$
g(a)=0, \quad g(x)=\frac{1}{x-a} \int_{a}^{x} f(t) d t, \quad x \in(a, b]
$$

Show that $g$ is of bounded variation on $[a, b]$.

## Part II. Functional Analysis

Do three of the following five problems.
(1) Let $H$ be a Hilbert space and $A: H \rightarrow H$ a linear operator defined everywhere on $H$. Suppose that $(A x, y)=(x, A y)$ for all $x, y \in H$. Show that $A$ must be bounded.
(2) Let $L^{2}\left(\mathbb{R}_{+}\right)$be the Hilbert space of square integrable functions on $\mathbb{R}_{+}=[0, \infty)$ (with respect to the Lebesgue measure). Define the operator

$$
T f(x)=\frac{1}{x} \int_{0}^{x} f(y) d y
$$

Show that $T: L^{2}\left(\mathbb{R}_{+}\right) \rightarrow L^{2}\left(\mathbb{R}_{+}\right)$is bounded but not compact.
(3) Let $p: \mathbb{R} \rightarrow \mathbb{R}_{+}$be a nonnegative function on $\mathbb{R}$ such that

$$
\int_{\mathbb{R}} p(x) d x=1 .
$$

Define $p_{h}(x)=h^{-1} p\left(h^{-1} x\right)$ for $h>0$. Let $f \in L^{q}(\mathbb{R})(1 \leq q<\infty)$ be a $L^{q}$ integrable function and $f_{h}=f * p_{h}$ the convolution of $f$ with $p_{h}$. Show the following two assertions: (1) $\left\|f_{h}\right\|_{q} \leq\|f\|_{q}$; (2) $\lim _{h \rightarrow 0}\left\|f_{h}-f\right\|_{q}=0$.
(4) Let $\mathrm{S}^{1}$ be the unit circle and define the Fourier coefficients of a function on $\mathrm{S}^{1}$ by

$$
\hat{f}(n)=\int_{\mathrm{S}^{1}} f(x) e^{i n x} d x
$$

Define the Sobolev space $H^{s}\left(S^{1}\right)$ to be the space of integrable function $f$ on $S^{1}$ such that

$$
\|f\|_{s}^{2}=\sum_{n \in \mathbb{Z}}\left(1+n^{2}\right)^{s}|\hat{f}(n)|^{2}<\infty .
$$

Let $s<t$. Show that the embedding $i_{s, t}: H^{t}\left(S^{1}\right) \rightarrow H^{s}\left(S^{1}\right)$ is compact.
(5) Suppose that $s>0$. Show that for any $g \in H^{s}\left(\mathbb{R}^{n}\right)$ there is an $f \in H^{s+1 / 2}\left(\mathbb{R}^{n+1}\right)$ such that $f\left(x_{1}, \cdots, x_{n}, 0\right)=g\left(x_{1}, \cdots, x_{n}\right)$ and $\|f\|_{s+1 / 2} \leq C\|g\|_{s}$. Here $C$ is a constant independent of $g$.

## Part III. Complex Analysis

Do three of the following five problems.
(1) (a) State Morera's theorem.
(b) Let $U \subseteq \mathbf{C}$ be open and convex, and $f_{n}: U \rightarrow \mathbf{C}$ a sequence of holomorphic functions converging on compact subsets of $U$ to a function $f$. Prove that $f$ is holomorphic on $U$.
(c) Prove that $f_{n}^{\prime} \rightarrow f^{\prime}$ uniformly on compact subsets of $U$.
(2) Let $f: D \rightarrow D$ be a holomorphic map of the unit disk $D:=\{z:|z|<1\}$ into itself.
(a) Give automorphisms $g$ and $h$ of $D$ such that $g(0)=a$, and $h(f(a))=0$.
(b) Prove that for all $a \in D$ one has

$$
\frac{\left|f^{\prime}(a)\right|}{1-|f(a)|^{2}} \leq \frac{1}{1-|a|^{2}}
$$

[Hint: Let $F=h \circ f \circ g$; apply Schwarz.]
(3) (a) State the Casorati-Weierstrass theorem.
(b) Let $H$ be the upper half-plane $\{z: \Im z>0\}$, and $f$ a function analytic on $\bar{H}$ such that for some $A>0$ and $\epsilon>0$ one has

$$
|f(\zeta)| \leq \frac{A}{|\zeta|^{\epsilon}}
$$

for all $\zeta$. Prove that for any $z \in H$, one has the integral formula (the Cauchy transform)

$$
f(z)=\frac{1}{2 \pi i} \int_{-\infty}^{\infty} \frac{f(t)}{t-z} d t
$$

(4) (a) State Liouville's theorem for bounded entire functions.
(b) Prove that if $f: \mathbf{C} \rightarrow \mathbf{C}$ is a non-constant analytic function, then the image of $f$ is dense in $\mathbf{C}$.
(5) Let $f$ be analytic on the closed unit disk. Assume that $|f(z)|=1$ if $|z|=1$ and $f$ is not constant. Prove that the image of $f$ contains the unit disk.

